Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 109(8): 1198-1215, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33319484

RESUMO

Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.


Assuntos
Âmnio/química , Bandagens , Materiais Biocompatíveis , Criopreservação , Engenharia Tecidual , Tecidos Suporte/química , Cicatrização , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/química , Humanos
2.
Cytotherapy ; 22(11): 653-668, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32855067

RESUMO

BACKGROUND AIMS: Mesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues. METHODS: MSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium. RESULTS: Large differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected. CONCLUSIONS: The results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Especificidade de Órgãos , Tecido Adiposo/citologia , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Reprodutibilidade dos Testes , Tetraspaninas/metabolismo , Doadores de Tecidos
3.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512889

RESUMO

For decades, the unique regenerative properties of the human amniotic membrane (hAM) have been successfully utilized in ophthalmology. As a directly applied biomaterial, the hAM should be available in a ready to use manner in clinical settings. However, an extended period of time is obligatory for performing quality and safety tests. Hence, the low temperature storage of the hAM is a virtually inevitable step in the chain from donor retrieval to patient application. At the same time, the impact of subzero temperatures carries an increased risk of irreversible alterations of the structure and composition of biological objects. In the present study, we performed a comprehensive analysis of the hAM as a medicinal product; this is intended for a novel strategy of application in ophthalmology requiring a GMP production protocol including double freezing-thawing cycles. We compared clinically relevant parameters, such as levels of growth factors and extracellular matrix proteins content, morphology, ultrastructure and mechanical properties, before and after one and two freezing cycles. It was found that epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-ß1), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), hyaluronic acid, and laminin could be detected in all studied conditions without significant differences. Additionally, histological and ultrastructure analysis, as well as transparency and mechanical tests, demonstrated that properties of the hAM required to support therapeutic efficacy in ophthalmology are not impaired by dual freezing.


Assuntos
Âmnio/química , Âmnio/fisiologia , Congelamento , Oftalmologia , Âmnio/ultraestrutura , Microscopia Crioeletrônica , Criopreservação , Humanos , Fenômenos Mecânicos , Oftalmologia/métodos
4.
J Cell Mol Med ; 24(9): 5070-5081, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212307

RESUMO

Xenotransplantation of pancreatic islets offers a promising alternative to overcome the shortage of allogeneic donors. Despite significant advances, either immune rejection or oxygen supply in immune protected encapsulated islets remains major bottlenecks for clinical application. To decrease xenogeneic immune responses, we generated tissue engineered swine leucocyte antigen (SLA)-silenced islet cell clusters (ICC). Single-cell suspensions from pancreatic islets were generated by enzymatic digestion of porcine ICCs. Cells were silenced for SLA class I and class II by lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin or class II transactivator, respectively. SLA-silenced ICCs-derived cells were then used to form new ICCs in stirred bioreactors in the presence of collagen VI. SLA class I silencing was designed to reach a level of up to 89% and class II by up to 81% on ICCs-derived cells. Xenogeneic T cell immune responses, NK cell and antibody-mediated cellular-dependent immune responses were significantly decreased in SLA-silenced cells. In stirred bioreactors, tissue engineered islets showed the typical 3D structure and insulin production. These data show the feasibility to generate low immunogenic porcine ICCs after single-cell engineering and post-transduction islet reassembling that might serve as an alternative to allogeneic pancreatic islet cell transplantation.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Animais , Anticorpos/química , Formação de Anticorpos , Sobrevivência Celular , Células Cultivadas , Inativação Gênica , Engenharia Genética/métodos , Imunidade Celular , Insulina/metabolismo , Células Matadoras Naturais/metabolismo , Transplante de Neoplasias , Pâncreas/metabolismo , Interferência de RNA , Suínos , Linfócitos T/metabolismo , Ativação Transcricional , Transplante Heterólogo
5.
Hum Gene Ther ; 30(4): 485-496, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30261752

RESUMO

Disparities at the major histocompatibility complex (MHC) antigens and associated minor antigens trigger harmful immune responses, leading to graft rejection after transplantation. We showed that MHC-silenced cells and tissues are efficiently protected against rejection. In complex vascularized organs, the endothelium is the major interface between donor and recipient. This study therefore aimed to reduce the immunogenicity of the lung by silencing MHC expression on the endothelium. In porcine lungs, short-hairpin RNAs targeting beta-2-microglobulin and class II-transactivator transcripts were delivered by lentiviral vectors during normothermic ex vivo perfusion to silence swine leukocyte antigen (SLA) I and II expression permanently. The results demonstrated the feasibility of genetically engineering all lung regions, achieving a targeted silencing effect for SLA I and II of 67% and 52%, respectively, without affecting cell viability or tissue integrity. This decrease in immunogenicity carries the potential to generate immunologically invisible organs to counteract the burden of rejection and immunosuppression.


Assuntos
Endotélio Vascular/metabolismo , Inativação Gênica , Engenharia Genética , Antígenos de Histocompatibilidade/genética , Pulmão/metabolismo , Animais , Células Endoteliais/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Vetores Genéticos/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Lentivirus/genética , Pulmão/patologia , Perfusão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Temperatura , Transdução Genética
6.
Biomaterials ; 185: 39-50, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218835

RESUMO

Clinical application of a large variety of biomaterials is limited by the imperfections in storage technology. Perspective approaches utilizing low-temperature storage are especially challenging for multicellular structures, such as tissues, organs, and bioengineered constructs. Placenta, as a temporary organ, is a widely available unique biological material, being among the most promising sources of various cells and tissues for clinical and experimental use in regenerative medicine and tissue engineering. The aim of this study was to analyse the mechanisms of cryoinjuries in different placental tissues and bioengineered constructs as well as to support the viability after low temperature storage, which would contribute to development of efficient biobanking technologies. This study shows that specificity of cryodamage depends on the structure of the studied object, intercellular bonds, as well as interaction of its components with cryoprotective agents. Remarkably, it was possible to efficiently isolate cells after thawing from all of the studied tissues. While the outcome was lower in comparison to the native non-frozen samples, the phenotype and expression levels of pluripotency genes remained unaffected. Further progress in eliminating of recrystallization processes during thawing would significantly improve biobanking technologies for multicellular constructs and tissues.


Assuntos
Criopreservação/métodos , Placenta/citologia , Adolescente , Adulto , Alginatos/química , Âmnio/citologia , Âmnio/ultraestrutura , Materiais Biocompatíveis/química , Bancos de Espécimes Biológicos , Engenharia Biomédica , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/ultraestrutura , Crioprotetores/química , Feminino , Humanos , Placenta/ultraestrutura , Gravidez , Engenharia Tecidual , Cordão Umbilical/citologia , Cordão Umbilical/ultraestrutura , Adulto Jovem
7.
Stem Cells Int ; 2018: 4837930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535770

RESUMO

Placental structures, capable to persist in a genetically foreign organism, are a natural model of allogeneic engraftment carrying a number of distinctive properties. In this review, the main features of the placenta and its derivatives such as structure, cellular composition, immunological and endocrine aspects, and the ability to invasion and deportation are discussed. These features are considered from a perspective that determines the placental material as a unique source for regenerative cell therapies and a lesson for immunological tolerance. A historical overview of clinical applications of placental extracts, cells, and tissue components is described. Empirically accumulated data are summarized and compared with modern research. Furthermore, we define scopes and outlooks of application of placental cells and tissues in the rapidly progressing field of regenerative medicine.

8.
Stem Cell Res Ther ; 8(1): 66, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28284229

RESUMO

BACKGROUND: Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. METHODS: In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. RESULTS: It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. CONCLUSIONS: Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.


Assuntos
Adipócitos/metabolismo , Condrócitos/metabolismo , Criopreservação/métodos , Células-Tronco Multipotentes/metabolismo , Osteoblastos/metabolismo , Placenta/metabolismo , Adipócitos/citologia , Âmnio/citologia , Âmnio/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Bancos de Espécimes Biológicos/normas , Biomarcadores/metabolismo , Diferenciação Celular , Sobrevivência Celular , Condrócitos/citologia , Feminino , Expressão Gênica , Humanos , Análise em Microsséries , Células-Tronco Multipotentes/citologia , Osteoblastos/citologia , Placenta/citologia , Gravidez , Temperatura , Transgenes
9.
PLoS One ; 10(10): e0139834, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431528

RESUMO

Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Placenta/efeitos dos fármacos , Células Cultivadas , Criopreservação/métodos , Dimetil Sulfóxido/farmacologia , Feminino , Humanos , Gravidez
10.
Stem Cell Res Ther ; 6: 150, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26297012

RESUMO

INTRODUCTION: Multipotent stromal cells (MSCs) are among the key candidates in regenerative medicine. However variety of MSC sources and general heterogeneity lead to controversial data in functional characterization. Furthermore, despite intensive usage as preclinical animal model, little is known about MSCs of the common marmoset monkey. METHODS: MSCs derived from placental amnion and bone marrow samples from human and common marmoset were characterized in parallel over 12 passages to monitor similarities and significant differences (p ≤ 0.05, Student's t-test) in MSC markers and major histocompatibility complex (MHC) class I expression by immunohistochemistry, flow cytometry, real-time PCR, metabolic activity test, with special focus on pluripotency associated genes. RESULTS: Human and non-human primate MSCs were characterized for expression of MSC markers and capability of differentiation into mesenchymal lineages. MSCs could be cultured more than 100 days (26 passages), but metabolic activity was significantly enhanced in amnion vs. bone marrow MSCs. Interestingly, MHC class I expression is significantly reduced in amnion MSCs until passage 6 in human and marmoset, but not in bone marrow cells. For MSC markers, CD73 and CD105 levels remain unchanged in amnion MSCs and slightly decline in bone marrow at late passages; CD166 is significantly higher expressed in human MSCs, CD106 significantly lower vs. marmoset. All cultured MSCs showed pluripotency marker expression like Oct-4A at passage 3 significantly decreasing over time (passages 6-12) while Nanog expression was highest in human bone marrow MSCs. Furthermore, human MSCs demonstrated the highest Sox2 levels vs. marmoset, whereas the marmoset exhibited significantly higher Lin28A values. Bisulfite sequencing of the Oct-4 promoter region displayed fewer methylations of CpG islands in the marmoset vs. human. CONCLUSIONS: Little is known about MSC characteristics from the preclinical animal model common marmoset vs. human during long term culture. Studied human and common marmoset samples share many similar features such as most MSC markers and reduced MHC class I expression in amnion cells vs. bone marrow. Furthermore, pluripotency markers indicate in both species a subpopulation of MSCs with true 'stemness', which could explain their high proliferation capacity, though possessing differences between human and marmoset in Lin28A and Sox2 expression.


Assuntos
Âmnio/citologia , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Animais , Callithrix , Diferenciação Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Primatas
11.
PLoS One ; 9(9): e107911, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259731

RESUMO

Alginate cell-based therapy requires further development focused on clinical application. To assess engraftment, risk of mutations and therapeutic benefit studies should be performed in an appropriate non-human primate model, such as the common marmoset (Callithrix jacchus). In this work we encapsulated amnion derived multipotent stromal cells (MSCs) from Callithrix jacchus in defined size alginate beads using a high voltage technique. Our results indicate that i) alginate-cell mixing procedure and cell concentration do not affect the diameter of alginate beads, ii) encapsulation of high cell numbers (up to 10×106 cells/ml) can be performed in alginate beads utilizing high voltage and iii) high voltage (15-30 kV) does not alter the viability, proliferation and differentiation capacity of MSCs post-encapsulation compared with alginate encapsulated cells produced by the traditional air-flow method. The consistent results were obtained over the period of 7 days of encapsulated MSCs culture and after cryopreservation utilizing a slow cooling procedure (1 K/min). The results of this work show that high voltage encapsulation can further be maximized to develop cell-based therapies with alginate beads in a non-human primate model towards human application.


Assuntos
Alginatos , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos , Criopreservação , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Ácido Glucurônico , Ácidos Hexurônicos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Primatas
12.
Cell Reprogram ; 14(6): 485-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23194452

RESUMO

Regenerative medicine is in need of solid, large animal models as a link between rodents and humans to evaluate the functionality, immunogenicity, and clinical safety of stem cell-derived cell types. The common marmoset (Callithrix jacchus) is an excellent large animal model, genetically close to humans and readily used worldwide in clinical research. Until now, only two groups showed the generation of induced pluripotent stem cells (iPSCs) from the common marmoset using integrating retroviral vectors. Therefore, we reprogrammed bone marrow-derived mesenchymal cells (MSCs) of adult marmosets in the presence of TAV, SB431542, PD0325901, and ascorbic acid via a novel, excisable lentiviral spleen focus-forming virus (SFFV)-driven quad-cistronic vector system (OCT3/4, KLF4, SOX2, C-MYC). Endogenous pluripotency markers like OCT3/4, KLF4, SOX2, C-MYC, LIN28, NANOG, and strong alkaline phosphatase signals were detected. Exogenous genes were silenced and additionally the cassette was removed with a retroviral Gag precursor system. The cell line could be cultured in absence of leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) and could be successfully differentiated into embryoid bodies and teratomas with presence of all three germ layers. Directed differentiation generated neural progenitors, megakaryocytes, adipocytes, chondrocytes, and osteogenic cells. Thus, all criteria for fully reprogrammed bone marrow-MSCs of a nonhuman primate with a genetically sophisticated construct could be demonstrated. These cells will be a promising tool for future autologous transplantations.


Assuntos
Células-Tronco Adultas , Células da Medula Óssea , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas , Lentivirus , Fatores de Transcrição/biossíntese , Transdução Genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Callithrix , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...